Quobly forges strategic collaboration with ST to accelerate its quantum processor manufacturing for large scale quantum computing solutions
Quobly has announced a transformative collaboration with STMicroelectronics to produce quantum processor units (QPUs) at scale. By leveraging STMicroelectronics’ advanced FD-SOI semiconductor process technologies, this collaboration is set to make large-scale quantum computing feasible and cost-effective, positioning both companies at the forefront of next-generation computing technologies.
Quobly aims to break the 1-million-qubit barrier by 2031, targeting applications ranging from pharmaceuticals, finance, materials science and complex systems modelling, including climate and fluid dynamics simulations. Together, the two companies aim to achieve a breakthrough in quantum computing by utilising their common expertise in FD-SOI, driving down R&D costs, and addressing the market’s demand for scalable, affordable quantum computing processors.
In the first phase of the collaboration, Quobly and ST will adapt ST’s 28nm FD-SOI process to match Quobly’s requirements, targeting a 100 Qubit Quantum Machine with proof of scalability beyond 100k physical qubits. ST will leverage its integrated device manufacturer model to bring Quobly its ability to bridge co-design, prototyping, industrialisation and volume production at scale in 300mm fabs using FD-SOI, a technology it has developed and exploited commercially for years across automotive, industrial and consumer applications.
Maud Vinet, CEO of Quobly, expressed her enthusiasm: “This collaboration is unparalleled in the quantum computing landscape. Working closely with STMicroelectronics will fast-track the industrialisation of our quantum processor technology by several years. We are thrilled to leverage ST’s semiconductor manufacturing expertise, which will speed up the development of a fully fault-tolerant quantum computer. We aim at breaking the 1-million-Qubit barrier by 2031, with applications ranging from pharmaceuticals, finance, materials science and complex systems modelling, including climate and fluid dynamics simulations.”
Remi El-Ouazzane, President, Microcontrollers, Digital ICs and RF products Group at STMicroelectronics, said: “Quantum computing will transform the world, starting with AI, chemistry, security and supply chain applications. This collaboration is building on ST’s IDM strengths, centred around our Crolles facility, integrating together our process R&D expertise, our circuit design know-how and volume manufacturing. We truly believe that pairing Quobly’s quantum expertise with ST’s FD-SOI knowledge and manufacturing will allow to accelerate economically viable, large-scale quantum computing solutions.”